Персонализация для e-commerce: актуальные технологии эффективных продаж

04.12.2019 4:00

Персонализация для e-commerce: актуальные технологии эффективных продаж

Мировой рынок e-commerce по итогам 2017 года составил $1,5 трлн, говорится в исследовании Digital economy compass 2018. Интернет-торговля в Украине также не стоит на месте — в 2017 объем продаж в денежном выражении достиг 50 млрд грн, по данным EVO, и продолжает активно расти.

В то же время, согласно исследованиям, онлайн-бизнесу и e-commerce удается конвертировать в покупателей только 3% пользователей. Другими словами, в среднем 100 посетителей дают всего 3 продажи. Увеличить этот показатель в разы может персонализированный ретаргетинг, основанный на современных технологиях искусственного интеллекта (ИИ).

Чем больше данных — тем точнее персонализация

Алгоритмы глубинного обучения (инновационной отрасли ИИ) имитируют работу человеческого мозга во время обработки данных и создания моделей принятия решений. Такой подход позволяет получать более точную и полную информацию для машинного распознавания покупательского потенциала пользователя.

Чем больше и разнообразней данных для обработки алгоритмом удается собрать — тем точнее будет персонализированный рекламный баннер. А это — до +50% к эффективности рекламной кампании. По данным RTB House, по персонализированным баннерам переходы совершаются на 41% чаще в сравнении с обычными.

Омниканальность

Согласно данным от Google, 85% онлайн-покупателей начинают покупку на одном устройстве и заканчивают на другом. Просмотр информации о продукте является частью процесса покупки, и предугадать, на каком цифровом носителе он будет совершаться — невозможно. Поскольку возможности современного digital-маркетинга позволяют контактировать с пользователями одновременно по 5-10 каналам, многоканальность становится не просто актуальной, а необходимой. Отслеживание эффективности рекламы по каждому из каналов с точки зрения конверсий, кликов и других показателей помогает более эффективно управлять каналами продаж, способствуя росту продаж и лояльности клиентов.

Улучшенный механизм рекомендаций и прогнозирования

70% прибыли в e-commerce приносят повторные покупки, и коэффициент конверсии у вернувшихся посетителей на 25% выше — говорится в E-commerce report 2017. Алгоритмы глубинного обучения способствуют более гибкому и четкому сегментированию аудитории. Это, в свою очередь, позволяет точнее формировать индивидуальные рекомендации, которые максимально соответствуют потребностям пользователя. А также эффективно использовать возможности кросс-сейл и даже прогнозировать будущие покупки на основе анализа имеющегося пользовательского опыта, активизируя проактивные продажи.

Возвращение к истокам

Сегодня умение приходить к правильному клиенту (заинтересованному в предлагаемых товарах или услугах), в нужное время и с нужной информацией требует уже не природного таланта, а использования инструментов персонализации.

Источник

Читайте также